Business Analytics e Cultura de Dados

Conhecimentos de Base Recomendados

Não são necessários conhecimentos prévios. 

Métodos de Ensino

A Unidade Curricular de Business Analytics permite que os alunos tomem conhecimento, aprendam a gerir e desenvolvam a capacidade para propor soluções de Data Analytics, em especial de Data Visualization, destinadas a qualquer tipo de organização, considerando as regras de negócio. Para tal, e numa primeira fase, os alunos terão aulas de cariz teórico-prático onde utilizarão ferramentas de Business Analytics, tomarão decisões quanto aos dados a utilizar e aos processos necessários para garantir a sua qualidade, compreenderão quais os indicadores fundamentais e relevantes para a tomada de decisão em contexto organizacional e proporão a forma mais adequada para apresentar e comunicar informação de modo que seja entendível pelo público a que se destina.

Few (2019) refere que “não estamos ainda na Idade da informação, mas sim na idade dos dados” e, atendendo à multiplicidade de dados disponíveis para facilitar o processo de decisão, os alunos terão vantagem se estiverem aptos a, nas suas empresas, propor soluções mais eficientes e eficazes para a apresentação da informação.

Pretende-se que os alunos tomem conhecimento dos diversos players nesta área, quer sejam software houses e soluções disponíveis no mercado, organismos que promovam a discussão do tema (International Institute of Business Analysis, Canadá), quer investigadores e estudos sobre as temáticas em discussão. Consequentemente, esta Unidade Curricular prevê a realização de Palestras com convidados externos sobre temáticas de investigação atual (considera-se fundamental que as UCs de Mestrado contribuam para que o aluno se sinta apto a realizar investigação) na área de Business Analytics e casos de aplicação, entre outras que venham a revelar-se oportunas.

Resultados de Aprendizagem

Os desafios da análise de dados estão, hoje, muito centrados na promoção de uma verdadeira “cultura de dados” nas organizações, para além de um profundo conhecimento do negócio em que cada empresa/organização atua, o que, atuando em sintonia, permite a aplicação de políticas de tomada de decisão efetiva baseada em dados (data-drivendecision making). Ferramentas para visualização de dados, nomeadamente, numa perspetiva de uso self-service, em plataformas cloud, são hoje a regra: o acesso democrático aos dados é também um tema de discussão fundamental.
Nesta UC assumem especial ênfase os temas, aplicações e potencialidades de Business Analytics e os desafios relacionados com a tomada de decisão baseada em dados, que urge ultrapassar para que uma verdadeira cultura de dados possa emergir, nomeadamente: qualidade dos dados, processos de transformação de dados, atualização e visualização em tempo real e uso colaborativo dos dados e output gerado.

Programa

1 – Conceitos de Business Analytics e Cultura de Dados
1.1 – Ciclo de Análise de dados
1.2 Fontes de Dados
1.3 Transformação de dados
1.4 Qualidade dos dados
1.5 Curadoria dos Dados
1.6 Aspetos éticos do uso de dados e RGPD
2 – Visualização de Dados
2.1 Regras para a elaboração de visualização de dados
2.2 Ferramentas para visualização de dados
2.3 Planificação, monitorização e discussão do processo de visualização de dados

Docente(s) responsável(eis)

Estágio(s)

NAO

Bibliografia

Laursen, G. H., & Thorlund, J. (2016). Business analytics for managers: Taking business intelligence beyond reporting.John Wiley & Sons.
Few, S. (2019), The Data Loom: Weaving Understanding by Thinking Critically and Scientifically with Data, AnalyticsPress.
Few, S. (2019), Now You See It: Simple Visualization Techniques for Quantiative Analysis, Analytics Press.
Pochiraju, B., & Seshadri, S. (Eds.). (2019). Essentials of Business Analytics: An Introduction to the Methodology andIts Applications (Vol. 264). Springer.
Aparicio, M., & Costa, C. J. (2015). Data visualization. Communication design quarterly review, 3(1), 7-11.
M. Y. Santos e I. Ramos, Business Intelligence – da Informação ao Conhecimento – 3.a edição Atualizada, Editora FCA,2017. ISBN: 978-972-722-880.
Schniederjans, M. J., Schniederjans, D. G., & Starkey, C. M. (2014). Business analytics principles, concepts, andapplications with SAS: what, why, and how. Pearson Education.