Base Knowledge
Mathematics, Numerical Methods and Physics in the 1st year of the bachelor’s degree in Food Engineering.
Teaching Methodologies
The domain expertise in the area of heat transfer allows the licensee to master the manipulation of thermal processing guaranteing food quality and ensuring food safety. This unit aims to prepare students for understanding of the laws of heat transfer, including its limitations, and its application in modeling and prediction in food processing. For this it is necessary to know the basic laws of heat transfer and its application to problems of steady state and transient state.
Learning Results
This course unit aims to develop competencies in: (1) Processing and Engineering, in particular the field of heat transfer to plant and equipment design and thermal processing to ensure the safety and quality of food; in (2) Interpersonal skills, particularly in the development of teamwork capacity.
Listed below are specific objectives in the form of learning outcomes
o1. Defines and explains, critically, fundamental laws and physical properties involved in problems of heat transfer;
o2. Identifies and comments on relevant situations of day-to-day and professional environments where there is heat transfer, taking into account the limitations of physical laws in their respective contexts;
o3. Applies the laws of heat transfer to solve steady state and transient state;
o4. Simulates situations of food processing using one-term solutions of the applicable laws of heat transfer;
o5. Comment with a critical sense, on the credibility and utility of these solutions;
Program
1. Heat transfer by conduction, natural convection, forced convection and radiation;
2. Physical properties: specific heat, thermal conductivity and thermal diffusivity
3. Heat transfer in different geometries (flat plate, cylinder, sphere, semi-infinite solid)
4. Notion of thermal resistance and overall coefficient of heat transfer
5. Critical isolation radius
6. Heat transfer in heat exchangers
7. Global capacitance method
8. Fourier’s 2nd law
9. Steady-state and transient state problems
10. Situations of heat transfer in day-to-day situations and professional environment
Curricular Unit Teachers
João Freire de NoronhaGrading Methods
- - trabalho de grupo 1 (35%) + teste 1 (65%) - 60.0%
- - trabalho de grupo 2 (35%) + teste 2 (65%) - 40.0%
Internship(s)
NAO
Bibliography
João Carlos Martins Coelho. 2019. Energia e Fluidos – Transferência de Calor (vol. 3). Blucher, São Paulo. ISBN: 9788521218418
ÇENGEL, Y.A. 2002. Heat Transfer : A Practical Approach, 2nd edition. McGraw-Hill Series in Mechanical Engineering. [descarregar em ResearchGate] Capítulos: 1, 2, 3, 4, 6, 7, 8 e 9
ÇENGEL, Y.A. 1998. Heat Transfer : A Practical Approach, McGraw-Hill Series in Mechanical Engineering. [ESAC: Z02 – 20178/9] Capítulos: 1, 2, 3, 4, 6, 7 e 9
INCROPERA, F.P., DeWITT, D.P. 1998. Fundamentos de transferência de calor e de massa. 4ª edição, Livros Técnicos e Científicos, Rio de Janeiro.
HARTEL, R.W., Howell Jr., T.A. e Hyslop, 1997. Math Concepts for Food Engineering, Technomic Publishing Company, Inc., Pennsylvania, U.S.A. [ESAC Q02 – 20147] Capítulos: 9, 10, 11, 12 e 13.