Métodos Computacionais em Engenharia

Conhecimentos de Base Recomendados

Conhecimentos de programação em Matlab.

Métodos de Ensino

Nas aulas desta unidade curricular recorre-se às seguintes metodologias de ensino:

Aulas Práticas

Principal metodologia utilizada:

  • Project-based learing, com a realização de checkpoints regulares com feedfoward, para avaliação, onde é, também, privilegiado o feedback interpares

Metodologias complementares:

  • Exposição de conteúdo intercalada com debate / discussão em aula;
  • Utilização de plataformas digitais de interação (mentimeter, padlet, entre outras);
  • Análise e resolução de casos de estudo em aula.

Aulas Teórico-Práticas:

  • Exposição de conteúdo intercalada com debate / discussão em aula;
  • Análise e resolução de casos de estudo em aula;
  • Demonstração em aula, com a comparação e discussão de resultados obtidos computacionalmente e analiticamente;
  • Problem-based learning, com problemas de aplicação específicos da Engenharia Mecânica;

Adicionalmente, utiliza-se uma plataforma de e-learning (ensino à distância) como complemento e prolongamento das aulas presenciais, destacando-se o uso de fóruns temáticos, como mais uma atividade para exposição, discussão e resolução de dúvidas e problemas de aplicação.

Resultados de Aprendizagem

A. Aplicar conhecimentos de base em matemática e programação a matérias lecionadas em outras UC da Licenciatura e Mestrado em Engenharia Mecânica;

B. Desenvolver a abordagem algorítmica e computacional em aplicações específicas de Engenharia Mecânica;

C. Aplicar métodos matemáticos computacionais na análise e resolução de problemas de engenharia;

D. Criar programas em ficheiros script e Live Script, com funções e comandos avançados de Matlab, para a resolução de aplicações específicas de Engenharia Mecânica;

E. Utilizar o AppDesigner do Matlab para a modelação e resolução de aplicações específicas de Engenharia Mecânica;

F. Utilizar métodos de modelação numérica no cálculo estrutural de qualquer componente mecânico, fazendo uso de programas próprios ou comerciais.

Programa

AULAS TEÓRICO-PRÁTICAS

1.  Transformada de Laplace

Definição e propriedades. Tabela de Transformadas de Laplace. Função Heaviside ou degrau unitário e função Delta de Dirac ou impulso unitário. Decomposição de uma fração racional numa soma de elementos simples (expansão em frações parciais). Transformada Inversa de Laplace. Teorema da Convolução. Resolução de problemas de valores iniciais e sistemas de equações diferenciais. Problemas práticos de aplicação – Sistemas Dinâmicos. Tratamento computacional utilizando o Matlab e programas CAS.

2.  Interpolação polinomial

Polinómio: definição, operações e propriedades. Fórmula e Polinómio de Taylor. Polinómio interpolador: definição, interpretação gráfica e fórmula de Newton das diferenças divididas.

3.  Diferenciação e Integração numérica

Fórmulas das diferenças progressivas, regressivas e centradas. Regra dos trapézios e regra de Simpson. Função Quad do Matlab.

4.  Equações Diferenciais Ordinárias e Sistemas de Equações Diferenciais. Problema de valores iniciais (PVI)

Métodos de Euler e de Runge-Kutta (RK2 e RK4). Funções do Matlab: ODE23, ODE45 e outras. Introdução às GUI’s (Graphical User Interface) em Matlab e sua aplicação para interface e output da solução de um PVI.

5.  Equações com Derivadas Parciais (EDPs)

Definição e propriedades. Equações de Laplace, Poisson, Difusão/Calor, Convexão/Transporte e da Onda. Problemas diferenciais com condições iniciais e de fronteira. Métodos numéricos de resolução de equações com derivadas parciais. Introdução ao Método das Diferenças Finitas (MDF) e ao Método dos Elementos Finitos (MEF). Formulação Fraca (FF) de um problema diferencial e aplicação do método de Ritz-Galerkin (R-G). Problemas de aplicação, modelação matemática pelo MDF e MEF, algoritmos e respetiva programação em Matlab.

AULAS PRÁTICAS

1.  Programação em Matlab

Revisões de programação em Matlab (arrays unidimensionais e multidimensionais, funções pré-definidas, expressões, instruções, criação de funções, importação e exportação de dados, gráficos 2D).

Arrays de células (Cell Arrays).

Estruturas de dados (Structures). Gráficos 3D.

Tratamento de erros.

Processamento de imagens. 

App Designer. 

Live Script.

2. Ferramentas Computacionais

Realização de workshops/seminários, sobre ferramentas computacionais relevantes para a prática da Engenharia Mecânica, nomeadamente para aplicações específicas para os alunos das especialidades de “Construção e Manutenção de Equipamentos Mecânicos” e de “Projeto, Instalação e Manutenção de Sistemas Térmicos”.

3.  Trabalho final

Trabalho final com aplicações específicas para os alunos das especialidades de “Construção e Manutenção de Equipamentos Mecânicos” e de “Projeto, Instalação e Manutenção de Sistemas Térmicos”.

Docente(s) responsável(eis)

Raquel Almeida de Azevedo Faria

Estágio(s)

NAO

Bibliografia

Bibliografia Recomendada:

  • GRADE, A. (2020). Apresentações das Aulas Práticas de MCE. ISEC (disponível na plataforma académica InforEstudante)
  • CORREIA, A. (2008). Apontamentos de AM2 e Matemática Aplicada. ISEC (disponível na plataforma académica InforEstudante)
  • CHAPMAN S. (2005). Programação em MATLAB para engenheiros. Reimp (disponível na Biblioteca do ISEC: 1A-1-317)
  • HAHN, B., VALENTINE, D. (2010). Essential MATLAB for Engineers and Scientists (4th ed.). Academic Press (disponível na Biblioteca do ISEC: 3-7-80)
  • JALURIA, Y. (1988). Computer Methods for Engineering. Allyn and Bacon (disponível na Biblioteca do ISEC: 1A-7-5)
  • FAUSETT, L. V. (1999). Applied numerical analysis using MATLAB. Prentice Hall (disponível na Biblioteca do ISEC: 3-4-202)
  • HARMAN, T., DABNEY, J., RICHERT, N. (2000). Advanced engineering mathematics with MATLAB, Brooks/Cole (disponível na Biblioteca do ISEC: 3-7-58)
  • MOLER, C. B. (2004). Numerical computing with MATLAB, Siam (disponível na Biblioteca do ISEC: 3-4-23)
  • KREYSZIG, E. (1999).  Advanced Engineering Mathematics (8th ed.). J. Wiley (disponível na Biblioteca do ISEC: 3-7-95)
  • MORAIS, V., VIEIRA, C. (2006). MATLAB 7 & 6 : Curso Completo, FCA (disponível na Biblioteca do ISEC: 1A-1-453)
  • ROSS, S. (1984)Differential Equations (3rd ed.). J. Wiley (disponível na Biblioteca do ISEC: 3-11-6)
  • BURDEN, R. L., FAIRES, J. D. (2001). Numerical Analysis, (7th ed.). Brooks/Cole (disponível na Biblioteca do ISEC: 3-4-67)
  • GLYN, J. (1996). Modern Engineering Mathematics (2nd ed.). Addison – Wesley (disponível na Biblioteca do ISEC: 3-2-193)