Conhecimentos de Base Recomendados
Serão utilizados conceitos aprendidos na unidade curricular de Machine Learning.
Métodos de Ensino
As aulas teóricas são aulas expositivas.
As aulas práticas baseiam-se em acompanhamento do trabalho prático intercaladas com resolução de exercícios. Algumas aulas serão exclusivamente dedicadas à resolução de exercícios.
Todos os elementos de apoio às aulas teóricas/práticas são disponibilizados aos alunos.
Resultados de Aprendizagem
Pretende-se que os alunos adquiram um conjunto de conhecimento e competências na área de Ambient Intelligence, nomeadamente:
- Conhecer e compreender os conceitos e tecnologias
- Conhecer, compreender e aplicar técnicas de aquisição e fusão de dados a partir de diferentes sensores
- Selecionar e aplicar as técnicas de machine learning adequadas sobre os dados recolhidos para inferir padrões sobre contexto e as suas dimensões
- Compreender o requisito de adaptabilidade das interfaces às necessidades do utilizador
- Conhecer e promover a privacidade na aquisição, salvaguarda e manuseamento de dados recolhidos
Programa
Componente Teórica:
1. Introdução
- Comparação e Definição AmI & Computação ubíqua
- Visão de Mark Weiser. A visão do ISTAG.
- Introdução aos conceitos fundamentais de AmI
2. Sistemas Baseados em Localização
- Bases de Dados Espaciais
- Sistemas de Informação Geográfica
- Análise Geoespacial de Dados
3. Sensores, Atuadores e Modelação
- Sensores oportunísticos e sensores privados
- Internet das Coisas (IoT)
- Computação Sensível ao Contexto
- Computação Sensível ao Contexto para IoT
4. Aprendizagem automática para AmI
- Algoritmos inteligentes e estruturas de dados que utilizam contexto: Map Matching, Routing, Diagramas de Voronoi.
- Fusão de dados e Clustering
- Classificação de dados de contexto
- Inteligência das Coisas
5. Privacidade
- Segurança vs. privacidade
- Regulamento Geral de Proteção de Dados
- Soluções técnicas
6. Experiência do Utilizador em AmI
- Interação Pessoa-Máquina e Adaptabilidade
- Interfaces inteligentes
- Design de Estudos de campo
7. Aplicações de Ambient Intelligence
- Sistemas Inteligentes de Transporte
- Cidades Inteligentes e Computação Urbana
- Ambientes Inteligentes
- Agricultura de Precisão
- Indústria 4.0
Componente Prática:
1. Recolha de dados por meio de dispositivos móveis
- Diferentes sensores de contexto (Localização, Movimento, Orientação, Temporal, Ambientais)
- Plataformas de Dados Abertos
- Conjunto de dados contextuais disponíveis
2. Armazenamento, Visualização e aplicação de algoritmos sobre dados de contexto
- Bases de dados espaciais
- Sistema de Informação Geográfica
- Map Matching, Routing e criação de Diagramas de Voronoi
- Técnicas de Anonimização de Dados
3. Aprendizagem automática sobre dados de contexto
- Pré-processamento e limpeza dos dados
- Análise Exploratória de Dados (EDA)
- Classificação e Clustering
Docente(s) responsável(eis)
Estágio(s)
NAO
Bibliografia
Obrigatória:
[1] Augusto, J., Callaghan, V., Cook, D., Kameas, A., Satoh, I. (2013). Intelligent Environments: a Manifesto. Human-centric Computing and Information Sciences, 3:12 (https://doi.org/10.1186/2192-1962-3-12 )
[2] Ubiquitous Computing Fundamentals. (2010). Edited by John Krumm, ISBN: 978-1420093605, CRC Press. [1A-21-1 (ISEC) – 18970]
[3] Chin, J., Callaghan, V., & Allouch, S. B. (2019). The Internet-of-Things: Reflections on the past, present and future from a user-centered and smart environment perspective. Journal of Ambient Intelligence and Smart Environments, 11(1), 45-69 (https://doi.org/10.3233/AIS-180506)
[4] Gams, M., Gu, I. Y. H., Härmä, A., Muñoz, A., & Tam, V. (2019). Artificial intelligence and ambient intelligence. Journal of Ambient Intelligence and Smart Environments, 11(1), 71-86 (https://doi.org/10.3233/AIS-180508)
[5] Dunne, R., Morris, T., & Harper, S. (2021). A Survey of Ambient Intelligence. ACM Computing Surveys, 54, 4, Article 73 (May 2022), 27 pages (https://doi.org/10.1145/3447242)
Opcional:
[6] Elazhary, H. (2019). Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms: Disambiguation and research directions. Journal of Network and Computer Applications, 128, 105-140 (https://doi.org/10.1016/j.jnca.2018.10.021).
[7] Müller, A., C., & Guido, S. (2017). Introduction to machine learning with Python : a guide for data scientists. ISBN 978-1-449-36941-5, O’Reilly. [ 1A-4-197 (ISEC) – 18236]
[8] Witten, I., Frank, E., Hall, M., Pal, C. (2016). Data Mining: Practical Machine Learning Tools and Techniques. ISBN: 978-0128042915, Morgan Kaufmann, 4th Edition.
[9] Ferraro, R., Aktihanoglu, M. (2011) Location Aware Applications. ISBN: 978-1935182337, Manning Publications.
Outros artigos relevantes (disponíveis online via b-on)